
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 19. October 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 5 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 26 October 2020, hand in your solution to your TA before the exercise class
starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 5.1 Heapsort (1 point).

Given the array [H, E, A, P, S, O, R, T], we want to sort it in ascending alphabetical order using Heapsort.

a) Draw the interpretation of the array as a heap, before any call of RestoreHeapCondition.

Solution:

H

E

P

T

S

A

O R

b) In the lecture you have learned a method to construct a heap from an unsorted array (see also pages
35–36 in the script). Draw the resulting max binary heap if this method is applied to the above array.

Solution:

We start from the heap drawn above. �e root of the heap is at level 0. Heapifying the subtree with
root at level 2 yields:

H

E

T

P

S

A

O R

�en, heapifying the subtrees with roots at level 1 yields:

H

T

P

E

S

R

O A

Finally, heapifying the subtree at the root node yields

T

S

P

E

H

R

O A

which corresponds to the array [T, S, R, P, H, O, A, E].

c) Sort the above array in ascending alphabetical order with heapsort, beginning with the heap that
you obtained in (b). Draw the array a�er each intermediate step in which a key is moved to its �nal
position.

Solution: We begin with the max binary heap [T, S, R, P, H, O, A, E]. We extract the root T and put
it into the last position in the array, i.e., we swap T with the last element E, removing T from the
heap, which yields

2

E

S

P H

R

O A

We then si� E downwards until the heap condition is restored:

S

P

E H

R

O A

Now, the array is [S, P, R, E, H, O, A, T] and contains the one-smaller heap in the front and the sorted
entries in the end.

�e array a�er the subsequent steps are as follows. Blue le�ers are at their �nal positions.

1) Swap S and A: [A, P, R, E, H, O, S, T]
Sift A down: [R, P, O, E, H, A, S, T]

2) Swap R and A: [A, P, O, E, H, R, S, T]
Sift A down: [P, H, O, E, A, R, S, T]

3) Swap P and A: [A, H, O, E, P, R, S, T]
Sift A down: [O, H, A, E, P, R, S, T]

4) Swap O and E: [E, H, A, O, P, R, S, T]
Sift E down: [H, E, A, O, P, R, S, T]

5) Swap H and A: [A, E, H, O, P, R, S, T]
Sift A down: [E, A, H, O, P, R, S, T]

6) Swap E and A: [A, E, H, O, P, R, S, T]
done: [A, E, H, O, P, R, S, T].

We are done.

Exercise 5.2 Sorting algorithms (This exercise is from Summer 2020 exam) .

Below you see four sequences of snapshots, each obtained during the execution of one of the following
algorithms: InsertionSort, SelectionSort, QuickSort, MergeSort, and BubbleSort.
For each sequence, write down the corresponding algorithm.

3

8 6 4 2 5 1 3 7

6 4 2 5 1 3 7 8

4 2 5 1 3 6 7 8

Bubblesort

8 6 4 2 5 1 3 7

1 6 4 2 5 8 3 7

1 2 4 6 5 8 3 7

Selectionsort

8 6 4 2 5 1 3 7

6 8 2 4 1 5 3 7

2 4 6 8 1 3 5 7

Mergesort

8 6 4 2 5 1 3 7

6 8 4 2 5 1 3 7

4 6 8 2 5 1 3 7

Insertionsort

Exercise 5.3 Counting Operations in Loops II.

For the following code fragments count how many times the function f is called. Report the number of
calls as nested sum, and then simplify your expression in simpli�ed Θ-notation and prove your result.

Hint: Note that in order to justify your Θ-notation you are required to show two parts: an upper bound on
your nested sum as well as a lower bound.

a) Consider the snippet:

Algorithm 1
for j = 1, . . . , n do

k ← 1
while k ≤ j do

m← 1
whilem ≤ j do

f()
m← 2 ·m

k ← 2 · k

Solution: f is called

n∑
j=1

blog2 jc∑
l=0

blog2 jc∑
i=0

1 =

n∑
j=1

(blog2 jc+ 1)2 ≤
n∑

j=1

(blog2 nc+ 1)2 ≤ O(n log2 n)

times. Notice that, when n ≥ 4, then log2(n/2) = log2 n− 1 ≥ (log2 n)/2. �erefore, for all n ≥ 4
we have

n∑
j=1

blog2 jc∑
l=0

blog2 jc∑
i=0

1 =

n∑
j=1

(blog2 jc+ 1)2 ≥
n∑

j=dn/2e

(blog2(n/2)c+ 1)2

≥
n∑

j=dn/2e

log2(n/2)2 ≥ n/2 · ((log2 n)/2)2 ≥ Ω(n log2 n),

4

so actually we have
n∑

j=1

blog2 jc∑
l=0

blog2 jc∑
i=0

1 = Θ(n log2 n).

b) Consider the snippet:

Algorithm 2
for j = 1, . . . , n do

for l = 1, . . . , 100 do
k ← 1
while k2 ≤ j do

f()
f()
k ← k + 1

Solution: f is called

n∑
j=1

100∑
l=1

b
√
jc∑

k=1

2 =
n∑

j=1

100 · b
√

jc · 2 ≤ 200
n∑

j=1

√
n = 200n3/2 ≤ O(n3/2)

times. Notice that, when n ≥ 24, then b
√
n/2c ≥

√
n/4. �erefore, for all n ≥ 24 we have

n∑
j=1

100∑
l=1

b
√
jc∑

k=1

2 ≥
n∑

j=dn/2e

b
√
jc ≥

n∑
j=dn/2e

b
√

n/2c

≥
n∑

j=dn/2e

√
n/4 ≥ n/2 ·

√
n/4 = n3/2/4 ≥ Ω(n3/2),

so actually we have
n∑

j=1

100∑
l=1

b
√
jc∑

k=1

2 = Θ(n3/2).

Exercise 5.4 Mastermind (1 point).

Anna and Ben are playing Mastermind. �e game consists of pins of 6 di�erent colors taken from the
set C = {1, 2, 3, 4, 5, 6}. Anna secretly chooses a combination of four of these pins (not necessarily
of di�erent colors), i.e. a tuple a = (a1, a2, a3, a4) ∈ C4. Ben’s goal is to discover this tuple. For
every guess b = (b1, b2, b3, b4) ∈ C4 that Ben does, Anna tells him how many correct pins there are
in b, i.e. for how many indices i ∈ {1, 2, 3, 4} one has ai = bi. For example, if a = (2, 1, 2, 1) and
b = (5, 1, 1, 1), Anna tells Ben that his guess contains 2 correct pins (but she does not tell him which
positions are correct).

a) How many di�erent combinations of pins can Anna make ?

Solution: �ere are 64 = 1296 possible combinations (for each of the 4 positions Anna can choose
among 6 di�erent colors).

5

b) Suppose that, a�er a few guesses, Ben has reduced to k the number of possible combinations (that
is, the number of tuples a that are compatible with all of Anna’s answers). Show that it is impossible
for Ben to reduce for sure the number of possible combinations to strictly less than

⌈
k−1
4

⌉
with his

next guess.

Hint: How many possible answers can Anna give to the Ben’s next guess? How many combinations
correspond to the the answer that the Ben’s guess contains 4 correct pins?

Solution:

Denote by b the next guess of Ben, and let T be the set of possible combinations just before Ben
makes the guess b (so |T | = k by assumption). �ere are 5 possible answers that Anna can give to
b, namely 0, 1, 2, 3 or 4 (corresponding to the number of correct pins in b). So T is partitioned in 5
sets T0, . . . , T4, where Ti is the set of combinations in T that are still possible if the answer to Ben’s
guess is i. Note that Anna answers 4 if and only if the guess b is correct, in other words T4 = {b}.
In particular |T4| = 1. Since T0, . . . , T4 form a partition of T (i.e. they are disjoint and their union
is T), this means that the other 4 subsets T0, . . . , T3 contain k − 1 elements together. In particular,
one of them must contain at least

⌈
k−1
4

⌉
elements.

Let i ∈ {0, 1, 2, 3} be an index such that |Ti| ≥
⌈
k−1
4

⌉
. If Anna’s secret combination a is in Ti, then

Ben gets the answer i and can therefore only reduce the possibilities to the set Ti. In this case, the
number of remaining possibilities is at least

⌈
k−1
4

⌉
.

c) Use parts (a) and (b) to show that, for any strategy that Ben uses to make his guesses, there always
exists a tuple a ∈ C4 that Ben cannot a�ain in strictly less than 6 guesses. In other words, there is no
algorithm that Ben can implement which has a worst-case runtime (in terms of number of guesses)
strictly less than 6.

Solution:

At the beginning, before Ben makes any guess, there are 1296 possible combinations by part a. By
part b, a�er one guess, in the worst case there can be

⌈
1296−1

4

⌉
= 324 remaining possibilities, and

a�er the second guess there can remain
⌈
324−1

4

⌉
= 81 of them. Continuing with the same reasoning,

we get that a�er 3 guesses there can be 20 remaining possibilities, and a�er 4 guesses there can still
be 5 possibilities. �en with its ��h guess, Ben can only try one of these 5 combinations, so in the
worst case he then needs a sixth guess to output the correct combination.

Exercise 5.5 Wine tasting (1 point).

You have n barrels of di�erent wines and you want to organize a wine tasting event. However, you
learn that exactly one of the wine barrels is poisoned. Your friend Céline is really into wine and agrees
to taste the wines in advance in order to help you �nd the poisoned barrel. On the i-th day, Céline can
try as many di�erent wines as you want. However, the e�ect of the poisoning is slow, so you only learn
on the morning of day i+ 1 whether one of the drunken wines was poisoned: if yes, she is sick for the
whole day and cannot drink any wine during this day, but she will be fully recovered for day i + 2; if
not, she can again drink as many wines on day i + 1 as she wants. In any case, you learn whether one
of the wines from the i-th day was poisoned, but you don’t know which one it might be. You want to
know how many days in the worst case you will need to discover which barrel is poisoned.

a) Draw a decision tree that shows how many di�erent cases (where one case corresponds to one
speci�c barrel being poisoned) you can distinguish a�er k days, for k = 4 (in other words your tree
should have depth 4).

6

Below you can see the decision tree which corresponds to the case k = 3:

H

S

H

H

S H

Day 1

Day 2

Day 3

An S node indicates that Céline is sick on that day, i.e. she is not able to drink any wine, while an
H node indicates that Céline is healthy on that day and can try some wines. �e leaves of this tree
correspond to 3 di�erent cases which is possible to distinguish in 3 days.

Solution:

Below, a decision tree of the possible outcomes of the �rst four days of wine tasting is drawn. Note
that an S node on day i is always followed by an H node on day i + 1 by assumption, while an H
node on day i can be followed by either another H node or an S node on day i + 1, depending on
whether Céline drank the poisoned wine on this day.

H

S

H

S H

H

S

H

H

S H

Day 1

Day 2

Day 3

Day 4

In particular, there are 5 leaves at the level of the fourth day, which means that one can distinguish
5 di�erent cases within four days.

b) Denote by Ck the number of cases that you can distinguish a�er k days. Find a recurrence relation
of the form Ck = f(Ck−1, Ck−2) and justify why it holds. �e decision tree from part (a) could be
useful.

Hint: Ck corresponds to the number of leaves at depth k in the decision tree.

Solution:

Let k ≥ 3. Note that Ck is simply the number of leaves in the decision tree of depth k. If we denote
by Ck(H) the number of H leaves of depth k, and similarly for Ck(S), we see that

Ck = Ck−1(S) + 2Ck−1(H),

since every S node has exactly one children and every H node has exactly two children. Using the
fact that Ck−1 = Ck−1(S) + Ck−1(H), we get Ck = Ck−1 + Ck−1(H). Since every node on level
k − 2 has exactly one H children on level k − 1, we actually have Ck−1(H) = Ck−2, so we deduce
the recurrence relation

Ck = Ck−1 + Ck−2. (1)

7

Alternatively, one can argue that a decision tree with root H and depth at least 2 has one subtree in
which the next H node is one level below the root, and one subtree in which the next H node is two
levels below the root. �is argument can also be given in the form that in case of staying healthy,
Céline still has k−1 days and can thus distinguish between Ck−1 wines, and in case of ge�ing sick,
she has k − 2 days le�, and can thus distinguish between Ck−2 wines.

c) Use the recurrence relation found in part (b) to show by induction that Ck ≤ 2k.

Solution:

We have C1 = 1, C2 = 2, and (1) holds for all k ≥ 3.

Base case. We have C1 = 1 ≤ 21 and C2 = 2 ≤ 22.

Induction Hypothesis. We assume that for some k ≥ 2 it holds that

Ck ≤ 2k and Ck−1 ≤ 2k−1. (2)

Inductive step (k → k + 1). Let k ≥ 2. By (1), we have Ck+1 = Ck + Ck−1. Using the induction
hypothesis (2), we get

Ck+1 ≤ 2k + 2k−1 ≤ 2k + 2k = 2k+1

as desired.
∗c’) Alternatively to (c), let ϕ := 1+

√
5

2 , and show that Ck ≤ ϕk.

Solution:

First of all, note that ϕ < 2 and thus this is a stricly stronger statement than (c). We have C1 = 1,
C2 = 2, and (1) holds for all k ≥ 3. We will now show by indution that Ck ≤ ϕk.

Base case. We have C1 = 1 ≤ 1+
√
5

2 and C2 = 2 ≤
(
1+
√
5

2

)2
.

Induction Hypothesis. We assume that for some k ≥ 2 it holds that

Ck ≤ ϕk and Ck−1 ≤ ϕk−1. (3)

Inductive step (k → k + 1). Let k ≥ 2. By (1), we have Ck+1 = Ck + Ck−1. Using the induction
hypothesis (3), we get

Ck+1 ≤ ϕk + ϕk−1 = ϕk(1 + ϕ−1) = ϕk 3 +
√

5√
5 + 1

= ϕk 2
√

5 + 2

6
≤ ϕk

√
5 + 1

2
= ϕk+1

as desired.

d) Deduce that, no ma�er what the drinking strategy of Céline is, you will need at least Ω(log n) days
to �nd the poisoned wine in the worst case.

Solution:

Part (c) tells us that a�er k days, one can distinguish at most 2k di�erent cases. If you have n di�erent
barrels, you need to make sure that you can distinguish at least n di�erent cases (the poisoned wine
could be in any of the n barrels). In particular, the number k of days needed must satisfy 2k ≥ n.
�is is equivalent to

k ≥ log2(n) ≥ Ω(log n),

which concludes the proof.

8

e) Is there a strategy that is guaranteed to succeed in O(log n) days? Justify your answer.

Solution:

�e naive binary search approach actually always succed in O(log n) days. Indeed, notice that we
can divide the number of potentially poisoned barrels by two every two days. More precisely, if on
day i we know that the poisoned barrel is among m given barrels, by making Céline drink a subset
of bm/2c of these wines, we will have reduced the number of potentially poisoned wines to dm/2e
by day i + 1, and we can continue this procedure on day i + 2 (in case Céline was sick on day
i + 1). �e number of days required for this strategy is simply the double of the number of binary
search steps that needs to be done. Since binary search among n elements requires O(log n) steps,
the number of days needed is also O(log n).

9

